COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coulomb and Bessel Functions of Complex Arguments and Order

The coulomb wavefunctions, originally constructed for real p > 0, real q and integer 2 > 0, are delined for p, n, and 1 all complex. We examine the complex continuation of a variety of series and continued-fraction expansions for the Coulomb functions and their logarithmic derivatives, and then see how these expansions may be selectively combined to calculate both the regular and irregular func...

متن کامل

The Hurwitz Complex Continued Fraction

The Hurwitz complex continued fraction algorithm generates Gaussian rational approximations to an arbitrary complex number α by way of a sequence (a0, a1, . . .) of Gaussian integers determined by a0 = [α], z0 = α − a0, (where [u] denotes the Gaussian integer nearest u) and for j ≥ 1, aj = [1/zj−1], zj = 1/zj−1−aj . The rational approximations are the finite continued fractions [a0; a1, . . . ,...

متن کامل

Theory of Hybrid Fractional Differential Equations with Complex Order

We develop the theory of hybrid fractional differential equations with the complex order $thetain mathbb{C}$, $theta=m+ialpha$, $0<mleq 1$, $alphain mathbb{R}$, in Caputo sense. Using Dhage's type fixed point theorem for the product of abstract nonlinear operators in Banach algebra; one of the operators is $mathfrak{D}$- Lipschitzian and the other one is completely continuous, we prove the exis...

متن کامل

On some results of entire functions of two complex variables using their relative lower order

Some basic properties relating to relative lower order of entire functions of two complex variables are discussed in this paper.

متن کامل

A new multidimensional continued fraction algorithm

It has been believed that the continued fraction expansion of (α, β) (1, α, β is a Q-basis of a real cubic field) obtained by the modified JacobiPerron algorithm is periodic. We conducted a numerical experiment (cf. Table B, Figure 1 and Figure 2) from which we conjecture the non-periodicity of the expansion of (⟨ 3 √3⟩, ⟨ 3 √9⟩) (⟨x⟩ denoting the fractional part of x). We present a new algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Physics Communications

سال: 1985

ISSN: 0010-4655

DOI: 10.1016/0010-4655(85)90025-6